\qquad

1. Point A is located at $(4,-7)$. The point is reflected in the x-axis. Where is its image located?
2. The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2} \circ T_{-4,3}$ what are the coordinates of A " and B "?
3. Which transformation can map the letter \mathbf{S} onto itself?
(1) glide reflection
(3) line reflection
(2) translation
(4) rotation
4. What is the image of point $(-3,9)$ after the composition of transformations defined by $R_{90^{\circ}} \circ r_{y=x}$?
5. Which transformation is not always an isometry?
(1) dilation
(3) line reflection
(2) translation
(4) rotation
6. Point C is located at $(3,8)$. The point is reflected over the line $x=6$. Where is its image located?
7. When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\Delta A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?
1) $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
2) perimeter of $\triangle A B C=$ perimeter of $\triangle A^{\prime} B^{\prime} C$
3) $\angle A \cong \angle A^{\prime}$
4) $2($ area of $\triangle A B C)=$ area of $\triangle A^{\prime} B^{\prime} C^{\prime}$
8. Point M is located at $(4,7)$. The point is reflected over the x-axis and then reflected over the y-axis. Where is its image located? Name a single transformation that would map point M to its image?
9. Graph and state the coordinates of $\triangle D O G$ after it is rotated -270°.

10. Graph and state the coordinates of $\triangle C A T$ after $r_{y=-2}$

11. On the accompanying grid, graph and label $\triangle A B C$ with vertices $A(3,1), B(0,4)$, and $C(-5,3)$. On the same grid, graph and label $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $A B C$ after the transformation $r_{x-a x i s} \circ r_{y=x}$.
a. Circle all that apply to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $A B C$.

b. Would it matter if the order of the reflections changed to $r_{y=x} \circ r_{x-a x i s}$? Prove by finding $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ under this composite transformation.
